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Description of the Network Model for Rutherford-Type Cables
J. McDonald

Abstract:

A description of the electrical-network model for Rutherford-type cables is provided, including
details of the solution method employed.

Problem description:

Consider a Rutherford cable of length L, containing N_ (assumed to be even) strands,
and having a pitch length L,. The cable length can be subdivided into N, bands of
length L, =L, /N, , as pictured in Figure 1. Each band can then be decomposed into a

collection of electrical sub-networks [1], as shown in Figure 2. Within each sub-network,
the electrical contacts between strands are represented by ohmic resistors, and each
section of strand is represented by a piece of wire with a resistance (either linear or
nonlinear) and a self inductance; in addition, each strand section is linked to every other
strand section in the cable by a mutual inductance.

The electrical network of each band contains 2N —2 strand sections, 2N intra-layer
(adjacent) contact resistances, and N, —1 inter-layer (cross-over) contact resistances.

Each strand section and contact resistance can carry a current; therefore, there are

5N, —3 unknown currents per band, and N, - (5N, —3) unknown currents in the entire

cable.

To solve directly for all the unknown currents, each band must yield a system of SN, —3

linearly-independent equations. This system of equations can be derived by applying the
Kirchhoff laws to loops and nodes within the network, and by constraining the net
transport current through the cable cross section [1].

A more efficient method is to replace each contact current by the voltage difference at its

end points (the contact nodes) divided by its resistance; this replacement allows the



problem to be formulated in terms of the well-known transmission-line equations [2], and
the resulting system can be solved directly for the currents in the strand sections. In this
approach, the number of unknowns in the linear system is reduced to N, - (2N .- 2), but

there is some extra post-processing involved in extracting the contact currents from the

node voltages via the expressions in Equation (15).

Deriving the equations:

In symbolic form, the transmission-line equations can be expressed as [2]:
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=
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where i is the vector of currents in the strand sections, U 1is the vector of voltages at
the contact nodes, J i is the vector of current changes along the strand sections (due to
inter-strand current transfer), § U | is the vector of voltage changes along the strand

sections, M is the inductance matrix, R is the diagonal matrix containing the
resistances of the strand sections, G is the conductance matrix describing the electrical

contacts between the strands, and " is the vector of externally-induced electro-motive

forces along the strand sections.
To obtain the explicit form of Equation (1) we need to apply the Kirchhoff laws to our
particular electrical network. For band #, let the strand currents be denoted by

i . J=2,..., 2N, -2, the cross-over currents by i

S, n, J

j=1..., N,—1,and the

¢, n, j

adjacent currents by i j=L..., 2N _; the contact resistances are labeled using the

a, n, j

same notation (see Figs.). Let the individual sub-networks in each band be labeled by an
n, v, f

index v=2,..., %N  +1;and let @  denote the time-rate-of-change of the outward-

directed external flux for face f of sub-network v, as depicted in Figures 2-5. The

inductive-matrix element linking strand section j in band » and strand section &k in



band m is denoted by M j";” . Using the specified notation, the first part of Equation (1)

takes the form:
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To represent the second part of Equation (1), we must consider current conservation in

the contact nodes, as depicted in Figure 6:
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The contact currents can be eliminated from Equations (9)-(14) using the relations:
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Combining Equations (9)-(15) with the definitions:
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Each of the Equations in (17)-(22) defines a single row of the matrix G .



Solving the equations:

In order to obtain a unique solution, we need to impose boundary conditions at the ends

of the cable. We will use fixed-current conditions defined by:

I
ivo = 7= N+l 2N -

(23)

where [, is the transport current in the cable.

Equation (1) can be integrated forward in time using an explicit Euler scheme [3, 4]:

(24)

When the matrix R is a function of the vector i, for example in the case a power-law

strand resistivity, then some form of iteration must be performed at each time step. The
damped Newton iteration is generally regarded as the best approach [5]. Using the
definitions: A=M+A ¢-R , x=i'", x, =i ', and

(-1

SN—

. - exi ) . .
b=M-i S(" YA t-(gs ‘-6 U , the damped Newton iteration takes the form:

s




given x, , &<<l1

Fo = A(xw))'ﬁ(m —b

for p=1,...

o4
i(p—l) =é(£(p—1))_ a_x "X
(p=1)

oy B =710

for m=0,...

1 m
Xy = Xy J{Ej AX )

o = é(ﬁ(m)'&p) —b

if | r, |< | r,. | exit for
end for
if | re, ‘<5‘ b ‘ exit for
(25)
end for

Within a single non-linear iteration we need to solve a linear system of the form

J -Ax ,, =-r . Because the matrix J 1s not sparse, a direct solution
=(p-1) =(p) =(p-1) =(p-D

becomes prohibitively expensive for large cables. Fortunately, because the matrix J (-1)

is symmetric and positive definite, we can use the well-known conjugate-gradients
method [4, 6], in which the solution is projected onto a subspace of orthogonal vectors,
constructed using matrix-vector multiplications. For a non-sparse matrix, however, each
matrix-vector product can become very costly, both in operation count and in storage
requirements. Luckily, the complexity of the matrix-vector products can be reduced by an
order of magnitude by implementing a modern algorithm called the Fast-Multipole

Method [7-11].
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Figure 1 Half of a pitch length for a 28-strand cable.
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